
D0 Data Requests/Settings
System Implementation

Mar 4, 1990

Introduction
The new message formats for D0 data requests/settings, described in the

document “D0 CDAQ Network Data Transmission Protocol” by Alan
Jonckheere, use the Acnet header designed by Charlie Briegel to support
generalized task-task communications across a network. The Network Layer
software in the VME Local Stations supports these Acnet header-based messages.
This note describes the implementation of the support for the new data request
and setting messages.

Message flow
When a request or setting message is received, it is directed to a well-known

taskname RPYR. At initialization, the DZero Request Task creates a message
queue (called DREQ) that is used to receive Acnet header-based messages directed
to the taskname RPYR. NetCnct registers this taskname to the Network Layer.

Function NetCnct (taskName, queueId, eventMask, VAR taskId);

The eventMask is left zero, as the Request Task will simply wait on the message
queue rather than wait on an event. The Request Task then enters an infinite loop
that calls NetCheck to wait for a message and, upon receiving one, process it.

Function NetCheck (taskId, timeOut, VAR msgRef);

When the function returns with valid status, the message type is checked as
found in the first word of the Acnet header. If it is a USM (unsolicited message)
with the CAN bit set, the request identified by the message id is cancelled. If it is a
request message type, the message following the header (and the format block) is
checked. If it is a setting, it is processed immediately. If it specifies a request for
data, then a set of 3 message blocks are allocated for support of the new request.
(If the request specifies an existing active message id, then the existing request is
cancelled.) The basic request block houses the various parameters needed to
monitor the request activity. Two pointers are included in that block that point to
the other related allocated blocks—the internal ptrs block and the answers block.

D0 Data Requests/Settings Mar 4, 1990 page 2
The basic DZero request block (type #13) contains the array of listype control
blocks (LCBs) and the period specification.

MBlkSize MBlkType=13

ReqAHdr ReqAHdr#by

LinkNext

Update Cntr

$00

ReqAHdr=$20

$08

$10

$18 pSpec pSpec#by

Ptr to internal ptrs block (#14) Ptr to answers block (#9)

Request Request#by

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

pSpecCur

pSpec period specification …

Acnet header

8 2 0 8 pSpec sData #listypes

listype# dOffset #bytes #idents

identLng idents other

listype
control
block
(7 words)

…

Request=$38

pSpecDly pSpecBlk

$28

$30

$40

$48

The Internal Ptrs block (type #14) contains the array of internal ptrs that are used
to update the request (build the answers) efficiently.

pBlkSize ptrsOff=8 nPtrs pBlkType

intPtr1ptrsOff

$00

intPtr2

…

D0 Data Requests/Settings Mar 4, 1990 page 3
The answers block (type #9) is an Acnet message block of the form used by the
Network Layer software when the answers are to be returned to the requesting
node/task. It also includes a pointer to the parent request block (type #13) for
use by QMonitor for one-shot requests that need automatic cancellation.

MBlkSize MBlkType=9

HdrOff HdrLng

$00

$08

$10

$18 dest
Node

netQFlag

FmtOff FmtLng

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

anBCnt

Ptr to xmitStat word

destNodeOff #bytes-2

MsgOff MsgLng XtrOff XtrLng

$30

answer data …

#sets

setSize

Acnet header

$28

Ptr to request block (type#13)taskId —$20

$38 anBDly anBFSz

year month

day hour min sec

$40

$48

$50

FmtOff FmtSize status fmt spec fmt specfmt spec

… status … ……

answType=
$8012

status sequence#

cycle …

…

Request message processing also includes building the format block for inclusion
in the answer response message. To do this there is a format specification
template for each listype included in the LTT module. The template is scanned
according to the #bytes of data requested per ident. If the end of the template is
reached, and the #bytes requested is not exhausted, the request is in error. This
constitutes a new restriction on data requests, where the #bytes that can be
requested using a given listype is constrained according to the format spec

D0 Data Requests/Settings Mar 4, 1990 page 4
After the request support blocks have been filled, the basic request block is
inserted into the chain of active data requests using INSCHAIN. It is inserted at a
position adjacent to another request block made by the same node, if any, in
order to increase the likelihood of combining the answer responses of multiple
requests into the same network frames. Then the Update Task is triggered to
update the request and build the first set of answers immediately.

The request message is processed as it resides in the network frame input buffer
DMA’d into memory by the chipset. This processing includes “compiling” the
request into the internal ptrs array for later update processing. The message
count word in the network frame buffer is decremented to signal to the network
that the request message space is now free for future use. Note that initializing
the request as it resides in the network buffer (instead of using NetRecv to copy
it into the caller’s buffer) saves copying the ident arrays in the request, at the
expense of the additional responsibility of decrementing the message count word
when finished with the request message. Of course, both the LCBs and period
specification must be copied into the request block for later update processing.

Updating requests
The Update Task scans through all active requests each cycle to update any

which are due for processing. It checks for this new request block type (#13) and
builds the answers accordingly. The read-type routines are called for each listype
using the array of internal pointers to build the answer data. Other data must be
placed into the header of the answer message. The format block, however,
should remain constant for the request’s activity.

A facility for blocking answer responses is specified in the new protocol’s period
specification. The two parameters given are the maximum number of messages
to build before responding and the timeout delay before responding when the
maximum number of answers have not yet been built. The size of the answers
block is affected by the maximum number of messages parameter, as it lengthens
both the format block as well as the answer message itself. As a result, an
estimate of the size of the returned answers and the required format block with
any blocking is needed before the answers block (type #9) can be allocated.

When the Update Task has built answers that are to be returned to the requester,
it invokes the NetQueue routine to do it. Just before that, however, it calls
NetXChk to flush any existing queued messages that are going to a different
node or use a different protocol type (different SAP) to the network chipset. This
is to ensure prompt delivery of responses to different nodes and yet combine
answer messages directed to the same node into the same frame for greater
network efficiency.

D0 Data Requests/Settings Mar 4, 1990 page 5

The Update Task flushes all queued messages to the network after it has
processed all active requests each 15 Hz cycle.

D0 Settings
Processing setting messages is greatly simplified because it is all done

immediately and because the format of the setting message is nearly identical
with that of the request message. The message type word is different to indicate
that is is a setting, the period specification is absent, and the setting data offset is
specified in the first three words of the message header.

The many set-type routines have been enhanced so that they now return error
codes whenever they encounter errors. (Previously, the setting was simply
ignored.) This error response word is used in the setting acknowledge message
specified in the protocol. A zero value indicates no detected error in performing
the setting.

Since setting processing includes an overview scan of the validity of the message,
performed by DOSIZES, a status-only reply may be given to a setting in place of
the setting acknowledge message. For the status-only cases as well as the setting
acknowledge cases, refer to the error codes given in the “Error reporting” section
of this document.

D0 Data Requests/Settings Mar 4, 1990 page 6

D0 Request Module Road Map
The organization of the routines in the DZREQ module is as follows, where an

asterisk denotes a declared entry point:

*DZREQ

CANCEL INZBLOCK

DZDELETE
DOSIZESDOPTRS

DOANSW
DOFMTSZ

*DZDELCHK

*DZUPDNEW *DZUPDCHK

DZUPDATE

D0 Data
Request/Setting
Task

Update Task

QMonitor Task

PSCAN

SETTING

SETACK

The upper collection of routines comprise the DZero Request Task, which waits
for a message directed to the destination taskname RPYR and processes it. For a
request message, the CANCEL routine searches the active list chain for a match
against the message id (“list#”), the requesting node and source task id. If it finds
a match, it calls DZDELETE to cancel that active request. The INZBLOCK is the
bulk of the code which prepares the request block, internal pointers block and
answers block for later processing by the Update Task. It uses several other
routines to help break that job down into more manageable pieces.

For a setting message, the DOSIZES routine is invoked to check for a number of
obvious errors. If an error is detected, a status-only reply is given. If not, a
doubly-nested loop—outer loop over listypes, inner loop over idents—calls the
system routine SETLOCAL to process each setting listype/ident pair. An error
return aborts the processing of any remaining settings in the message, and
SETACK is invoked to deliver the setting acknowledgment message.

The middle section is the DZDELCHK routine which is called by the QMonitor
Task when it has detected the completion of transmission of an Acnet-type
message (block type#9) with bit#6 of the NetQFlg word set in the block,
indicating that the block is to be retained for re-use. (If the bit were not set,
QMonitor would simply free the memory for that block.) It checks for the case of
a one-shot DZero data request that should be cancelled. So QMonitor has to
recognize the type#9 message and be aware of the NetQFlg word. It also looks

D0 Data Requests/Settings Mar 4, 1990 page 7
the NetQFlg was set indicating that the block was queued for transmission to the
network.

The last section includes two entry points that are called by the Update Task to
process type#13 requests during its traversal of the active request chain.
DZUPDNEW updates the request only if it has never been updated before, whereas
DZUPDCHK examines the period specification and updates the request only if it is
time for an update. DZUPDATE shepherds the actual updating of the request and
checks the blocking parameters before queuing a response to the network.

Error reporting for requests
A number of potential errors are detected when processing a D0 data request

message. For most of these, a response is returned to the requester consisting of a
status-only reply, which includes only the Acnet header; neither the format block
nor the answer message is attached. Current error codes are as follows:

-64 period spec not implemented yet
-65 invalid message size
-66 invalid request header size
-67 invalid DZero message type
-68 invalid #listypes
-69 dynamic memory unavailable
-70 invalid listype#
-71 invalid identype (error in listype table)
-72 invalid ident length for listype#
-73 invalid #idents for single listype
-74 invalid #bytes requested per ident
-75 invalid offset to ident array in LCB
-76 format block/#bytes conflict
-77 requested #bytes exceeded format spec template
-78 invalid total #idents this request
-79 size of answers format block too large
-80 size of answers too large
-81 #sets of answers too large (blocking spec)
-82 invalid format spec (error in listype table)
-83 request message data offset not implemented
-84 LCB “other” parameters not implemented
-85 spare
-86 setting message data offset out of range
-87 setting message included period spec

In addition to the response to the requester, these errors are recorded in the Local
Station in local variables of the DZero Request Task. They can be inspected for

D0 Data Requests/Settings Mar 4, 1990 page 8

Another error that can be returned by the Network Layer itself is the following:

-21 destination task not connected to network (RPYR not connected)

This means that the 4-byte destination task name in the Acnet header was not
recognized by the node that received it. For systems which have Network Layer
support but have not yet been updated with the D0 data request software, this
will certainly result.

Setting acknowledgment error codes
The following list of errors can occur in response to a data setting message:

0 No error. Setting successful.
1 System table not defined for this listype.
2 Entry# (chan#, bit#, etc) out of range.
3 Odd #bytes of data
4 Bus error
5 #bytes too small
6 #bytes too large
7 Invalid #bytes
8 Set-type out of range (error in listype table)
9 Settings not allowed for this listype
10 Analog control type# out of range (error in analog descriptor)
11 Invalid binary byte address in BADDR table
12 Invalid mpx channel# (Linac D/A hardware)
13 F3 scale factor out of range (motor #steps processing)
14 No CPROQ table or co-proc# out of range
15 Hardware D/A board address odd
16 Bit# index out of range (associated bit control via channel)
17 Bit# out of range for this system’s database
18 Digital Control Delay table full (for software-formed pulses)
19 Digital control type# out of range 1–15
20 Co-processor command queue unavailable
21 Co-processor invalid queue header
22 Queue full or unavailable
23 Dynamic memory allocation failed
24 Error status from 1553 controller
25 Invalid 1553 command for one word output
26 Invalid 1553 Command Block address (must be multiple of 16)
27 Invalid 1553 order code in first word of Command Block
28 1553 interrupts not working
29 Cannot initialize 1553 command queue
30 No Q1553 table of pointers to 1553 controller queues
31 Invalid Motor table

D0 Data Requests/Settings Mar 4, 1990 page 9
35 Invalid data value.
36 Invalid #bytes of text in Comment alarm control
37 No DSTRM table of Data Stream queue pointers
38 Data Stream queue type# out of range
39 Data Stream queue not initialized
40 No MMAPS table of memory-mapped board templates
41 Invalid MMAPS table header
42 Invalid MMAPS table entry size
43 Invalid board# for MMAPS table
44 Invalid directory entry in MMAPS table
45 End of MMAPS table reached during template processing
46 Invalid MMAPS command type code
47 Invalid MMAPS loop params
48 Invalid MMAPS nested loop
49 spare
50 Invalid listype#
51 Invalid ident type# (error in listype table)
52 Invalid ident length for this listype
53 Little console settings switch disabled
54 Little console external settings switch disabled
55 Data Server setting not implemented

Limitations of present implementation
Features not supported in the initial version of DZero request handling are

the following:

Period specifications besides one-shots and simple periodic and blocking
Data offset specified at listype level
“Other” parameters specified at listype level
Error status reporting for each listype-ident pair

It is not intended to support data requests of the “Data Server” type for the D0
protocol. Idents in a request are ignored if they do not include the node# of the
local station receiving the request in the first word of the ident. This means that
one could send the same request to a group of nodes using the functional group
multicast form of network addressing, and each node receiving the request
would select out its own idents for answer response. (Obviously the requesting
node would need to scan the original request in order to be in a position to match
the answers with the questions.) Currently, however, the Acnet header-based
protocols do not permit sending request messages to a group of nodes.

